92 research outputs found

    Magnetic resonance imaging and surface-based analysis techniques to quantify growth of the developing brain

    Get PDF
    Human brains, and those of most higher mammals, are gyrencephalic: folded) to accommodate a large cortical surface within the limited volume of the skull. Abnormal folding of the cerebral cortex in humans is associated with a number of neurological dysfunctions and diseases such as schizophrenia and Williams syndrome. To understand the mechanism of gyrification, and to illuminate the underlying causes of abnormal folding, objective, quantitative methods to characterize normal and abnormal development must be developed. The ferret is an excellent model in which to study the development of convolutions in the brain because folding occurs post-natally over a period of several weeks, and the brain can be imaged conveniently in small-animal magnetic resonance: MR) scanners. Here, MR imaging was used to acquire three-dimensional image volumes of the ferret brain in vivo at different stages during the period of cortical folding. Through segmentation of these volumes, surface representations of the cortex are generated at each time point. A novel intra-subject registration algorithm: LAndmark Correspondence and Relaxation Of Surface Strain: LACROSS), which provides a point-to-point correspondence between two surfaces, is applied to the cortical surfaces from two ferret kits. The resulting calculations of growth show regional patterns within the cortex, and temporal variations over this period of early brain development

    A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants

    Get PDF
    We have established a population average surface based atlas of human cerebral cortex at term gestation and used it to compare infant and adult cortical shape characteristics. Accurate cortical surface reconstructions for each hemisphere of 12 healthy term gestation infants were generated from structural magnetic resonance imaging data using a novel segmentation algorithm. Each surface was inflated, flattened, mapped to a standard spherical configuration, and registered to a target atlas sphere that reflected shape characteristics of all 24 contributing hemispheres using landmark constrained surface registration. Population average maps of sulcal depth, depth variability, 3-dimensional positional variability, and hemispheric depth asymmetry were generated and compared to previously established maps of adult cortex. We found that cortical structure in term infants is similar to the adult in many respects, including the pattern of individual variability and the presence of statistically significant structural asymmetries in lateral temporal cortex, including the planum temporale and superior temporal sulcus. These results indicate that several features of cortical shape are minimally influenced by the postnatal environment

    Magnetic resonance imaging detects significant sex differences in human myocardial strain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathophysiology responsible for the significant outcome disparities between men and women with cardiac disease is largely unknown. Further investigation into basic cardiac physiological differences between the sexes is needed. This study utilized magnetic resonance imaging (MRI)-based multiparametric strain analysis to search for sex-based differences in regional myocardial contractile function.</p> <p>Methods</p> <p>End-systolic strain (circumferential, longitudinal, and radial) was interpolated from MRI-based radiofrequency tissue tagging grid point displacements in each of 60 normal adult volunteers (32 females).</p> <p>Results</p> <p>The average global left ventricular (LV) strain among normal female volunteers (n = 32) was significantly larger in absolute value (functionally better) than in normal male volunteers (n = 28) in both the circumferential direction (Male/Female = -0.19 ± 0.02 vs. -0.21 ± 0.02; p = 0.025) and longitudinal direction (Male/Female = -0.14 ± 0.03 vs. -0.16 ± 0.02; p = 0.007).</p> <p>Conclusions</p> <p>The finding of significantly larger circumferential and longitudinal LV strain among normal female volunteers suggests that baseline contractile differences between the sexes may contribute to the well-recognized divergence in cardiovascular disease outcomes. Further work is needed in order to determine the pathologic changes that occur in LV strain between women and men with the onset of cardiovascular disease.</p

    Calibration of a heterogeneous brain model using a subject-specific inverse finite element approach

    Get PDF
    Central to the investigation of the biomechanics of traumatic brain injury (TBI) and the assessment of injury risk from head impact are finite element (FE) models of the human brain. However, many existing FE human brain models have been developed with simplified representations of the parenchyma, which may limit their applicability as an injury prediction tool. Recent advances in neuroimaging techniques and brain biomechanics provide new and necessary experimental data that can improve the biofidelity of FE brain models. In this study, the CAB-20MSym template model was developed, calibrated, and extensively verified. To implement material heterogeneity, a magnetic resonance elastography (MRE) template image was leveraged to define the relative stiffness gradient of the brain model. A multi-stage inverse FE (iFE) approach was used to calibrate the material parameters that defined the underlying non-linear deviatoric response by minimizing the error between model-predicted brain displacements and experimental displacement data. This process involved calibrating the infinitesimal shear modulus of the material using low-severity, low-deformation impact cases and the material non-linearity using high-severity, high-deformation cases from a dataset of in situ brain displacements obtained from cadaveric specimens. To minimize the geometric discrepancy between the FE models used in the iFE calibration and the cadaveric specimens from which the experimental data were obtained, subject-specific models of these cadaveric brain specimens were developed and used in the calibration process. Finally, the calibrated material parameters were extensively verified using independent brain displacement data from 33 rotational head impacts, spanning multiple loading directions (sagittal, coronal, axial), magnitudes (20–40 rad/s), durations (30–60 ms), and severity. Overall, the heterogeneous CAB-20MSym template model demonstrated good biofidelity with a mean overall CORA score of 0.63 ± 0.06 when compared to in situ brain displacement data. Strains predicted by the calibrated model under non-injurious rotational impacts in human volunteers (N = 6) also demonstrated similar biofidelity compared to in vivo measurements obtained from tagged magnetic resonance imaging studies. In addition to serving as an anatomically accurate model for further investigations of TBI biomechanics, the MRE-based framework for implementing material heterogeneity could serve as a foundation for incorporating subject-specific material properties in future models

    Acrylamide in potato crisps prepared from 20 UK-grown varieties: effects of variety and tuber storage time

    Get PDF
    Twenty varieties of field-grown potato were stored for 2 months and 6 months at 8 °C. Mean acrylamide contents in crisps prepared from all varieties at both storage times ranged from 131 Όg per kg in Verdi to 5360 Όg per kg in Pentland Dell. In contrast to previous studies, the longer storage period did not affect acrylamide formation significantly for most varieties, the exceptions being Innovator, where acrylamide formation increased, and Saturna, where it decreased. Four of the five varieties designated as suitable for crisping produced crisps with acrylamide levels below the European Commission indicative value of 1000 Όg per kg (Saturna, Lady Rosetta, Lady Claire, and Verdi); the exception was Hermes. Two varieties more often used for French fries, Markies and Fontane, also produced crisps with less than 1000 Όg per kg acrylamide. Correlations between acrylamide, its precursors and crisp colour are described, and the implications of the results for production of potato crisps are discussed

    Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food

    Get PDF
    EFSA wishes to thank the Working Group members: Manolis Kogevinas (until 14 September 2016), George Loizou (until 23 January 2017), and the hearing experts: Matteo Bonzini, Jane Burns, Claude Emond, Aleksander Giwercman, Russ Hauser, Lidia Mínguez‐Alarcón and Paolo Mocarelli, for the support provided to this scientific output. The CONTAM Panel acknowledges all European competent institutions and other stakeholders that provided occurrence data on PCDD/Fs and DL‐PCBs in food and feed, and supported the data collection for the Comprehensive European Food Consumption Database.Peer reviewedPublisher PD

    Mechanisms underlying a thalamocortical transformation during active tactile sensation

    Get PDF
    During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brain’s ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit
    • 

    corecore